БЛАГОДАРНОСТИЭта работа была поддержана K08 award from the National Human Genome Research Institute (1K08HG0101), a Junior Faculty Research Award from the National Lipid Association, a BroadIgnite grant from the Broad Institute of MIT and Harvard (to A.V.K.), funding from the Wellcome Trust (202802/Z/16/Z), the University of Bristol NIHR Biomedical Research Centre (S- BRC-1215-20011), and the MRC Integrative Epidemiology Unit (MC_UU_12013/3 to N.J.T.), a RO1 award the National Heart Lung and Blood Institute (HL127564 to S.K.) and the Ofer and Shelly Nemirovsky Research Scholar Award from Massachusetts General Hospital (to S.K.).
Экзомное секвенирование участников биобанка Великобритании было поддержано премией UM1 от National Human Genome Research Institute (HG008895; to E.S.L. and S.K.).
Когортный анализ бариатрической хирургии от Partners HealthCare System был поддержангрантами от National Institutes of Health (DK088661, DK090956, and DK040561), Merck Research Laboratories, and Ethicon Endo-Surgery (all to L.M.K.).
Исследование Риска Развития Коронарных Артерий у Молодых Людей (CARDIA – Coronary Artery Risk Development in Young Adults Study) поддерживается контрактами HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C от
Национального института сердца, легких и крови (NHLBI – National Heart, Lung, and Blood Institute), Программой внутренних исследований Национального института по проблемамстарения (NIA – National Institute on Aging), и внутриагентское соглашение между NIA и NHLBI (AG0005). Генотипирование и импутация финансировались в рамках исследований Ассоциации генной среды(GENEVA – Gene Environment Association Studies) через гранты U01-HG004729, U01-HG04424, and U01-HG004446 от Национального научно-исследовательского института генома человека (National Human Genome Research Institute). Эта рукопись была рассмотрена и одобрена CARDIA для научного содержания.
Мы чрезвычайно благодарны всем семьям, принявшим участие в этом исследовании, акушеркам за помощь в их наборе, а также всей команде ALSPAC, в которую входят интервьюеры, компьютерные и лабораторные техники, канцелярские работники, ученые-исследователи, волонтеры, менеджеры, администраторы и медсестры. The UK Medical Research Council и Wellcome (Grant ref: 102215/2/13/2) иthe University of Bristol обеспечение основной поддержки для ALSPAC. The ALSPAC анализ – это работа авторов, а Drs. Kaitlin Wade и Professor Nicholas Timpson послужат гарантами в отношении содержания данного документа.
СноскиДЕКЛАРАЦИЯ ИНТЕРЕСОВ
A.V.K. and S.K. are listed as co-inventors on a patent application for the use of polygenic scores to determine risk and guide therapy, and have received consultant fees from Color Genomics (Burlingame, CA). E.S.L serves on the Board of Directors for Codiak BioSciences and Neon Therapeutics, and serves on the Scientific Advisory Board of F-Prime Capital Partners and Third Rock Ventures; he is also affiliated with several non-profit organizations including serving on the Board of Directors of the Innocence Project, Count Me In, and Biden Cancer Initiative, and the Board of Trustees for the Parker Institute for Cancer Immunotherapy. He has served and continues to serve on various federal advisory committees.
Отказ от ответственности издателя: Это PDF-файл неотредактированной рукописи, которая была принята к публикации. В качестве услуги для наших клиентов мы предоставляем эту раннюю версию рукописи. Рукопись будет подвергнута редактированию, верстке и рецензированию полученной корректуры, прежде чем она будет опубликована в окончательной форме, пригодной для цитирования. Обратите внимание, что в процессе производства могут быть обнаружены ошибки, которые могут повлиять на содержание, и все юридические оговорки, применимые к журналу, относятся к нему.
References1. Barsh GS, Farooqi IS, and O’Rahilly S (2000). Genetics of body-weight regulation. Nature 404, 644–651. [
PubMed] [
Google Scholar]
2. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J, and Caspi A (2013). Development and evaluation of a genetic risk score for obesity. Biodemography Soc Biol 59, 85–100. [
PMC free article] [
PubMed] [
Google Scholar]
3. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring S, and Davey Smith G (2013). Cohort Profile: the ‘children of the 90s’--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 42, 111–127. [
PMC free article] [
PubMed] [
Google Scholar]
4. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, et al. (2008). Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4, e1000083. [
PMC free article] [
PubMed] [
Google Scholar]
5. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics, C., Patterson N, Daly MJ, Price AL, and Neale BM (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–295. [
PMC free article] [
PubMed] [
Google Scholar]
6. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, et al. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209. [
PMC free article] [
PubMed] [
Google Scholar]
7. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, and Lee JJ (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. [
PMC free article] [
PubMed] [
Google Scholar]
8. Charlson ME, Pompei P, Ales KL, and MacKenzie CR (1987). A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40, 373–383. [
PubMed] [
Google Scholar]
9. Chatterjee N, Shi J, and Garcia-Closas M (2016). Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet 17, 392–406. [
PMC free article] [
PubMed] [
Google Scholar]
10. Chatterjee N, Wheeler B, Sampson J, Hartge P, Chanock SJ, and Park JH (2013). Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet 45, 400–405, 405e401–403. [
PMC free article] [
PubMed] [
Google Scholar]
11. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. (2016). Next-generation genotype imputation service and methods. Nat Genet 48, 1284–1287. [
PMC free article] [
PubMed] [
Google Scholar]
12. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, and Ong KK (2012). Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne) 3, 29. [
PMC free article] [
PubMed] [
Google Scholar]
13. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, and O’Rahilly S (2003). Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348, 1085–1095. [
PubMed] [
Google Scholar]
14. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, and Castelli WP (1975). The Framingham Offspring Study. Design and preliminary data. Prev Med 4, 518–525. [
PubMed] [
Google Scholar]
15. Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, Young G, Fennell TJ, Allen A, Ambrogio L, et al. (2011). A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol 12, R1. [
PMC free article] [
PubMed] [
Google Scholar]
16. Flannick J, Beer NL, Bick AG, Agarwala V, Molnes J, Gupta N, Burtt NP, Florez JC, Meigs JB, Taylor H, et al. (2013). Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet 45, 1380–1385. [
PMC free article] [
PubMed] [
Google Scholar]
17. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, and Ogden CL (2016). Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA 315, 2284–2291. [
PMC free article] [
PubMed] [
Google Scholar]
18. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, Henderson J, Macleod J, Molloy L, Ness A, et al. (2013). Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol 42, 97–110. [
PMC free article] [
PubMed] [
Google Scholar]
19. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr., Liu K, and Savage PJ (1988). CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41, 1105–1116. [
PubMed] [
Google Scholar]
20. Golan D, Lander ES, and Rosset S (2014). Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci U S A 111, E5272–5281. [
PMC free article] [
PubMed] [
Google Scholar]
21. Hatoum IJ, Greenawalt DM, Cotsapas C, Daly MJ, Reitman ML, and Kaplan LM (2013). Weight loss after gastric bypass is associated with a variant at 15q26.1. Am J Hum Genet 92, 827–834. [
PMC free article] [
PubMed] [
Google Scholar]
22. Howe LD, Tilling K, Matijasevich A, Petherick ES, Santos AC, Fairley L, Wright J, Santos IS, Barros AJ, Martin RM, et al. (2016). Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts. Stat Methods Med Res 25, 1854–1874. [
PMC free article] [
PubMed] [
Google Scholar]
23. Hung CF, Breen G, Czamara D, Corre T, Wolf C, Kloiber S, Bergmann S, Craddock N, Gill M, Holsboer F, et al. (2015). A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Med 13, 86. [
PMC free article] [
PubMed] [
Google Scholar]
24. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, et al. (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141. [
PubMed] [
Google Scholar]
25. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, and Sklar P (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752. [
PMC free article] [
PubMed] [
Google Scholar]
26. Karlson EW, Boutin NT, Hoffnagle AG, and Allen NL (2016). Building the Partners HealthCare Biobank at Partners Personalized Medicine: Informed Consent, Return of Research Results, Recruitment Lessons and Operational Considerations. J Pers Med 6. [
PMC free article] [
PubMed] [
Google Scholar]
27. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander ES, Lubitz SA, Ellinor PT, et al. (2018a). Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50, 1219–1224. [
PMC free article] [
PubMed] [
Google Scholar]
28. Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, Lichtman JH, D’Onofrio G, Mattera JA, Dreyer RP, et al. (2018b). Whole Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized with Early-Onset Myocardial Infarction. Circulation. [
PMC free article] [
PubMed] [
Google Scholar]
29. Khera AV, and Kathiresan S (2017). Is Coronary Atherosclerosis One Disease or Many? Setting Realistic Expectations for Precision Medicine. Circulation 135, 1005–1007. [
PMC free article] [
PubMed] [
Google Scholar]
30. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, et al. (2016). Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J Am Coll Cardiol 67, 2578–2589. [
PMC free article] [
PubMed] [
Google Scholar]
31. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, Mai K, Blume-Peytavi U, Gruters A, and Krude H (2016). Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N Engl J Med 375, 240–246. [
PubMed] [
Google Scholar]
32. Larsen LH, Echwald SM, Sorensen TI, Andersen T, Wulff BS, and Pedersen O (2005). Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity. J Clin Endocrinol Metab 90, 219–224. [
PubMed] [
Google Scholar]
33. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, Nguyen-Viet TA, Bowers P, Sidorenko J, Karlsson Linner R, et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet 50, 1112–1121. [
PMC free article] [
PubMed] [
Google Scholar]
34. Li S, Zhao JH, Luan J, Luben RN, Rodwell SA, Khaw KT, Ong KK, Wareham NJ, and Loos RJ (2010). Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 91, 184–190. [
PubMed] [
Google Scholar]
35. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206. [
PMC free article] [
PubMed] [
Google Scholar]
36. Loos RJF, and Janssens A (2017). Predicting Polygenic Obesity Using Genetic Information. Cell Metab 25, 535–543. [
PubMed] [
Google Scholar]
37. Maes HH, Neale MC, and Eaves LJ (1997). Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27, 325–351. [
PubMed] [
Google Scholar]
38. Manickam K, Buchanan AH, Schwartz MLB, Hallquist MLG, Williams JL, Rahm AK, Rocha H, Savatt JM, Evans AR, Ledbetter DH, et al. (2018). Exome Sequencing–Based Screening for BRCA½ Expected Pathogenic Variants Among Adult Biobank Participants. JAMA Network Open 1, e182140. [
PMC free article] [
PubMed] [
Google Scholar]
39. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279–1283. [
PMC free article] [
PubMed] [
Google Scholar]
40. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303. [
PMC free article] [
PubMed] [
Google Scholar]
41. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, Sartori S, Fuster V, Reilly DF, Butterworth A, et al. (2017). Polygenic Risk Score Identifies Subgroup With Higher Burden of Atherosclerosis and Greater Relative Benefit From Statin Therapy in the Primary Prevention Setting. Circulation 135, 2091–2101. [
PMC free article] [
PubMed] [
Google Scholar]
42. NCD Risk Factor Collaboration (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642. [
PMC free article] [
PubMed] [
Google Scholar]
43. NHLBI Expert Panel (1998). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res 6 Suppl 2, 51S–209S. [
PubMed] [
Google Scholar]
44. Pharoah PD, Antoniou AC, Easton DF, and Ponder BA (2008). Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358, 2796–2803. [
PubMed] [
Google Scholar]
45. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, et al. (2014). Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348, g1610. [
PMC free article] [
PubMed] [
Google Scholar]
46. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, et al. (2012). Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 367, 1387–1396. [
PMC free article] [
PubMed] [
Google Scholar]
47. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405–424. [
PMC free article] [
PubMed] [
Google Scholar]
48. Sandholt CH, Sparso T, Grarup N, Albrechtsen A, Almind K, Hansen L, Toft U, Jorgensen T, Hansen T, and Pedersen O (2010). Combined analyses of 20 common obesity susceptibility variants. Diabetes 59, 1667–1673. [
PMC free article] [
PubMed] [
Google Scholar]
49. Smith GD (2016). A fatter, healthier but more unequal world. Lancet 387, 1349–1350. [
PubMed] [
Google Scholar]
50. Stutzmann F, Tan K, Vatin V, Dina C, Jouret B, Tichet J, Balkau B, Potoczna N, Horber F, O’Rahilly S, et al. (2008). Prevalence of melanocortin-4 receptor deficiency in Europeans and their agedependent penetrance in multigenerational pedigrees. Diabetes 57, 2511–2518. [
PMC free article] [
PubMed] [
Google Scholar]
51. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779. [
PMC free article] [
PubMed] [
Google Scholar]
52. The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature 526, 68–74. [
PMC free article] [
PubMed] [
Google Scholar]
53. Tilling K, Macdonald-Wallis C, Lawlor DA, Hughes RA, and Howe LD (2014). Modelling childhood growth using fractional polynomials and linear splines. Ann Nutr Metab 65, 129–138. [
PMC free article] [
PubMed] [
Google Scholar]
54. Tomiyama AJ, Carr D, Granberg EM, Major B, Robinson E, Sutin AR, and Brewis A (2018). How and why weight stigma drives the obesity ‘epidemic’ and harms health. BMC Med 16, 123. [
PMC free article] [
PubMed] [
Google Scholar]
55. Torkamani A, Wineinger NE, and Topol EJ (2018). The personal and clinical utility of polygenic risk scores. Nat Rev Genet 19, 581–590. [
PubMed] [
Google Scholar]
56. Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, et al. (2018). Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50, 26–41. [
PMC free article] [
PubMed] [
Google Scholar]
57. Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, Tuke MA, Ruth KS, Freathy RM, Davey Smith G, et al. (2017). Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol 46, 559–575. [
PMC free article] [
PubMed] [
Google Scholar]
58. UoBc, C.f.M.M. (2016). runmlwin: Stata module for fitting multilevel models in the MLwiN software.
59. UoBc, C.f.M.M. (2017). MLwiN Version 3.01.
60. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, and Froguel P (2000). Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106, 253–262. [
PMC free article] [
PubMed] [
Google Scholar]
61. Vaisse C, Clement K, Guy-Grand B, and Froguel P (1998). A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20, 113–114. [
PubMed] [
Google Scholar]
62. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al. (2013). From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11 10 11–33. [
PMC free article] [
PubMed] [
Google Scholar]
63. Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, Genovese G, Loh PR, Bhatia G, Do R, et al. (2015). Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum Genet 97, 576–592. [
PMC free article] [
PubMed] [
Google Scholar]
64. Visscher PM, Brown MA, McCarthy MI, and Yang J (2012). Five years of GWAS discovery. Am J Hum Genet 90, 7–24. [
PMC free article] [
PubMed] [
Google Scholar]
65. Whitaker RC, Wright JA, Pepe MS, Seidel KD, and Dietz WH (1997). Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337, 869–873. [
PubMed] [
Google Scholar]
66. Xiang Z, Litherland SA, Sorensen NB, Proneth B, Wood MS, Shaw AM, Millard WJ, and Haskell-Luevano C (2006). Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288. [
PubMed] [
Google Scholar]
67. Yampolsky LY, Kondrashov FA, and Kondrashov AS (2005). Distribution of the strength of selection against amino acid replacements in human proteins. Hum Mol Genet 14, 3191–3201. [
PubMed] [
Google Scholar]
68. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR, Perry JR, Nolte IM, van Vliet-Ostaptchouk JV, et al. (2015). Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet 47, 1114–1120. [
PMC free article] [
PubMed] [
Google Scholar]
69. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, Feenstra B, Feingold E, Hayes MG, et al. (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43, 519–525. [
PMC free article] [
PubMed] [
Google Scholar]
70. Yanovski SZ, and Yanovski JA (2018). Toward Precision Approaches for the Prevention and Treatment of Obesity. JAMA 319, 223–224. [
PMC free article] [
PubMed] [
Google Scholar]
71. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, and O’Rahilly S (1998). A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20, 111–112. [
PubMed] [
Google Scholar]
72. Zhang M, Lykke-Andersen S, Zhu B, Xiao W, Hoskins JW, Zhang X, Rost LM, Collins I, Bunt MV, Jia J, et al. (2018). Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut 67, 521–533. [
PMC free article] [
PubMed] [
Google Scholar]
73. Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH, Nolte IM, van Vliet-Ostaptchouk JV, Snieder H, LifeLines Cohort S, Esko T, et al. (2015). Dominance genetic variation contributes little to the missing heritability for human complex traits. Am J Hum Genet 96, 377–385. [
PMC free article] [
PubMed] [
Google Scholar]